Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
3.
J Clin Med ; 13(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610917

RESUMO

Ultrasound and high-frequency ultrasound assessment of melanoma and non-melanoma skin cancer in the pre-therapeutical setting is becoming increasingly popular in the field of dermatosurgery and dermatooncology, as it can provide clinicians with relevant, "in vivo" parameters regarding tumor lateral and depth extension as well as potential locoregional spread, cancelling the need of more extensive imaging methods and avoiding a delay in diagnosis. Furthermore, preoperative sonography and color Doppler can aid in orienting the clinical diagnosis, being able in numerous situations to differentiate between benign and malignant lesions, which require a different therapeutic approach. This preoperative knowledge is of paramount importance for planning an individualized treatment regimen. Using sonography at the time of diagnosis, important surgical complications, such as neurovascular damage, can be avoided by performing a preoperative neurovascular mapping. Furthermore, sonography can help reduce the number of surgical steps by identifying the lesions' extent prior to surgery, but it can also spare unnecessary surgical interventions in cases of locally advanced lesions, which infiltrate the bone or already present with locoregional metastases, which usually require modern radiooncological therapies in accordance to European guidelines. With this review, we intend to summarize the current indications of sonography in the field of skin cancer surgery, which can help us improve the therapeutic attitude toward our patients and enhance patient counseling. In the era of modern systemic radiooncological therapies, sonography can help better select patients who qualify for surgical procedures or require systemic treatments due to tumoral extension.

5.
Cytotherapy ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38441512

RESUMO

BACKGROUND: Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS: An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS: IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS: We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.

7.
J Dtsch Dermatol Ges ; 22(3): 357-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243870

RESUMO

BACKGROUND AND OBJECTIVES: The knowledge of depth infiltration in non-melanoma skin cancer (NMSC) using pre-operative ultrasound could enable clinicians to choose the most adequate therapeutic approach, avoiding unnecessary surgeries and expensive imaging methods, delaying diagnosis and treatment. Our single-center retrospective study determined the usefulness of high-frequency ultrasound (HFUS) for depth infiltration assessment in auricular and nasal NMSC and assessed the subsequent change in therapeutic approach. PATIENTS AND METHODS: In 60 NMSC cases, we assessed the accuracy of HFUS in cartilaginous/bone infiltration detection as well as the correlation of sonographic and histological parameters. RESULTS: In 16.6% of cases, a deep cartilaginous/bone involvement or locoregional disease was identified pre-operatively, resulting in a changed therapeutical scheme of radio-immunological treatment rather than surgery. In two cases, pre-operative HFUS identified local cartilage infiltration, reducing the number of surgical procedures. Forty-eight remaining lesions with no depth infiltration were excised; a correlation of > 99% between the histologic and sonographic tumor depth (p<0.001) was found. CONCLUSIONS: Pre-surgical HFUS influences the therapeutic management in NMSC by detecting subclinical involvement of deeper structures, avoiding more extensive diagnostics, reducing costs, and improving healthcare quality. High-frequency ultrasound should be implemented in dermatosurgery before tumor excision for optimized therapy and improved patient counseling.


Assuntos
Neoplasias Cutâneas , Humanos , Estudos Retrospectivos , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/cirurgia , Ultrassonografia/métodos
8.
Mech Ageing Dev ; 216: 111887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993056

RESUMO

The naked mole-rat (NMR) Heterocephalus glaber (from the Greek/latin words ἕτερος, heteros = divergent, κεφαλή, kephale = head and glabra = hairless) was first described by Rüppell (Fig. 1) and belongs to the Hystricognath (from the Greek words ὕστριξ, hystrix = porcupine and γνάθος, gnathos = jaw) as a suborder of rodents. NMR are characterized by the highest longevity among rodents and reveal a profound cancer resistance. Details of its skin-specific protective and resistance mechanisms against aging and carcinogenesis have so far not been adequately characterized. Recently, our knowledge of NMR skin biology was complemented and expanded by published data using state-of-the art histological and molecular techniques. Here we review and integrate novel published data regarding skin morphology and histology of the aging NMR and the underlying mechanisms at the cellular and molecular level. We relate this data to the longevity of the NMR and its resistance to neoplastic transformation and discuss further open questions to understand its extraordinary longevity. In addition, we will address the exposome, defined as "the total of all non-genetic, endogenous and exogenous environmental influences" on the skin, respiratory tract, stomach, and intestine. Finally, we will discuss in perspective further intriguing possibilities arising from the interaction of skin with other organs.


Assuntos
Neoplasias , Resiliência Psicológica , Animais , Envelhecimento/patologia , Longevidade , Ratos-Toupeira
10.
Dermatologie (Heidelb) ; 74(9): 645-656, 2023 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-37638987

RESUMO

BACKGROUND: Cellular senescence is the main cause of skin and organ aging and is associated with a wide range of aging-related diseases. OBJECTIVES: To understand which senolytics, senomorphics, and cell-based therapies have been developed to alleviate and even rejuvenate skin aging and reduce cellular senescence. METHODS: Basic literature for the mode of action of senolytics and senomorphics and their clinical perspectives in daily routine are discussed. RESULTS: Various causes lead to mitochondrial dysfunction and the activation of pro-aging signaling pathways, which eventually lead to cellular senescence with degradation of structural proteins of the dermal connective tissue and severe suppression of regenerative stem cell niches of the skin. CONCLUSIONS: Depletion of senescent cells suppress skin aging and enforce rejuvenation of skin and other organs and their function. The removal of senescent cells by cells of the native immune system is severely disturbed during aging. Selected senolytics and senomorphics are approved and are already on the market.


Assuntos
Envelhecimento da Pele , Senoterapia , Senescência Celular , Terapia Baseada em Transplante de Células e Tecidos
11.
Proc Natl Acad Sci U S A ; 120(34): e2301880120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579160

RESUMO

Skin is the largest human organ with easily noticeable biophysical manifestations of aging. As human tissues age, there is chronological accumulation of biophysical changes due to internal and environmental factors. Skin aging leads to decreased elasticity and the loss of dermal matrix integrity via degradation. The mechanical properties of the dermal matrix are maintained by fibroblasts, which undergo replicative aging and may reach senescence. While the secretory phenotype of senescent fibroblasts is well studied, little is known about changes in the fibroblasts biophysical phenotype. Therefore, we compare biophysical properties of young versus proliferatively aged primary fibroblasts via fluorescence and traction force microscopy, single-cell atomic force spectroscopy, microfluidics, and microrheology of the cytoskeleton. Results show senescent fibroblasts have decreased cytoskeletal tension and myosin II regulatory light chain phosphorylation, in addition to significant loss of traction force. The alteration of cellular forces is harmful to extracellular matrix homeostasis, while decreased cytoskeletal tension can amplify epigenetic changes involved in senescence. Further exploration and detection of these mechanical phenomena provide possibilities for previously unexplored pharmaceutical targets against aging.


Assuntos
Senescência Celular , Pele , Humanos , Idoso , Senescência Celular/genética , Células Cultivadas , Envelhecimento , Fibroblastos/metabolismo
12.
Cells ; 12(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508541

RESUMO

Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.


Assuntos
Síndromes de Tricotiodistrofia , Humanos , Criança , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Mutação/genética , RNA Polimerase I/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a DNA/metabolismo
13.
J Ultrasound Med ; 42(7): 1609-1616, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36714967

RESUMO

The preoperative assessment of infiltration depth in melanoma and non-melanoma skin cancer by means of high-frequency ultrasound (≥18 MhZ) is essential for optimizing the therapeutic approach in our patients. Often, histologically confirmed skin tumors are directly referred to surgical departments for resection, and sonography is increasingly helping us identify those subjects who are no longer candidates for extensive surgical interventions. In cases of deep tumor infiltration, with potential surgical failure e.g. impairment of the quality of life and significant esthetic and functional complications, preoperative sonography can guide the surgeon to withstand from an operation and decide instead in favor of less mutilating radiooncological or medical treatment options. Furthermore, in melanoma patients, the preoperative knowledge of the tumor depth is essential for the determination of the therapeutic approach, the correct safety margins and the need of a sentinelnode biopsy. We herein encourage the use of preoperative sonography in dermatologic surgery whenever possible as it represents an easy, painless, "in vivo" method, which provides clinicians with significant clinical information that can influence the therapy and improve patient compliance.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Qualidade de Vida , Melanoma/diagnóstico por imagem , Melanoma/cirurgia , Neoplasias Cutâneas/patologia , Biópsia , Ultrassonografia
14.
Hum Mol Genet ; 32(7): 1102-1113, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36308430

RESUMO

TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.


Assuntos
Síndromes de Tricotiodistrofia , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Reparo do DNA/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Mutação , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patologia , Ribossomos/genética , Ribossomos/metabolismo
15.
Stem Cell Res Ther ; 13(1): 455, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064604

RESUMO

BACKGROUND: While rapid healing of diabetic foot ulcers (DFUs) is highly desirable to avoid infections, amputations and life-threatening complications, DFUs often respond poorly to standard treatment. GMP-manufactured skin-derived ABCB5+ mesenchymal stem cells (MSCs) might provide a new adjunctive DFU treatment, based on their remarkable skin wound homing and engraftment potential, their ability to adaptively respond to inflammatory signals, and their wound healing-promoting efficacy in mouse wound models and human chronic venous ulcers. METHODS: The angiogenic potential of ABCB5+ MSCs was characterized with respect to angiogenic factor expression at the mRNA and protein level, in vitro endothelial trans-differentiation and tube formation potential, and perfusion-restoring capacity in a mouse hindlimb ischemia model. Finally, the efficacy and safety of ABCB5+ MSCs for topical adjunctive treatment of chronic, standard therapy-refractory, neuropathic plantar DFUs were assessed in an open-label single-arm clinical trial. RESULTS: Hypoxic incubation of ABCB5+ MSCs led to posttranslational stabilization of the hypoxia-inducible transcription factor 1α (HIF-1α) and upregulation of HIF-1α mRNA levels. HIF-1α pathway activation was accompanied by upregulation of vascular endothelial growth factor (VEGF) transcription and increase in VEGF protein secretion. Upon culture in growth factor-supplemented medium, ABCB5+ MSCs expressed the endothelial-lineage marker CD31, and after seeding on gel matrix, ABCB5+ MSCs demonstrated formation of capillary-like structures comparable with human umbilical vein endothelial cells. Intramuscularly injected ABCB5+ MSCs to mice with surgically induced hindlimb ischemia accelerated perfusion recovery as measured by laser Doppler blood perfusion imaging and enhanced capillary proliferation and vascularization in the ischemic muscles. Adjunctive topical application of ABCB5+ MSCs onto therapy-refractory DFUs elicited median wound surface area reductions from baseline of 59% (full analysis set, n = 23), 64% (per-protocol set, n = 20) and 67% (subgroup of responders, n = 17) at week 12, while no treatment-related adverse events were observed. CONCLUSIONS: The present observations identify GMP-manufactured ABCB5+ dermal MSCs as a potential, safe candidate for adjunctive therapy of otherwise incurable DFUs and justify the conduct of a larger, randomized controlled trial to validate the clinical efficacy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03267784, Registered 30 August 2017, https://clinicaltrials.gov/ct2/show/NCT03267784.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Pé Diabético , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Derme/citologia , Derme/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Pé Diabético/terapia , Humanos , Isquemia/metabolismo , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
17.
Pharmaceutics ; 14(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890361

RESUMO

Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer of the elderly, with high metastatic potential and poor prognosis. In particular, the primary resistance to immune checkpoint inhibitors (ICI) in metastatic (m)MCC patients represents a challenge not yet met by any efficient treatment modality. Herein, we describe a novel therapeutic concept with short-interval, low-dose 177Lutetium (Lu)-high affinity (HA)-DOTATATE [177Lu]Lu-HA-DOTATATE peptide receptor radionuclide therapy (SILD-PRRT) in combination with PD-1 ICI to induce remission in patients with ICI-resistant mMCC. We report on the initial refractory response of two immunocompromised mMCC patients to the PD-L1 inhibitor avelumab. After confirming the expression of somatostatin receptors (SSTR) on tumor cells by [68Ga]Ga-HA-DOTATATE-PET/CT (PET/CT), we employed low-dose PRRT (up to six treatments, mean activity 3.5 GBq per cycle) at 3-6 weeks intervals in combination with the PD-1 inhibitor pembrolizumab to restore responsiveness to ICI. This combination enabled the synergistic application of PD-1 checkpoint immunotherapy with low-dose PRRT at more frequent intervals, and was very well tolerated by both patients. PET/CTs demonstrated remarkable responses at all metastatic sites (lymph nodes, distant skin, and bones), which were maintained for 3.6 and 4.8 months, respectively. Both patients eventually succumbed with progressive disease after 7.7 and 8 months, respectively, from the start of treatment with SILD-PRRT and pembrolizumab. We demonstrate that SILD-PRRT in combination with pembrolizumab is safe and well-tolerated, even in elderly, immunocompromised mMCC patients. The restoration of clinical responses in ICI-refractory patients as proposed here could potentially be used not only for patients with mMCC, but many other cancer types currently treated with PD-1/PD-L1 inhibitors.

18.
J Dtsch Dermatol Ges ; 20(7): 913-926, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35616215

RESUMO

Ultrasonography (US) is a modern, in vivo imaging method, which is increasingly being used in dermatology as a complementary tool to clinical examination and dermoscopy. At higher frequencies (15 MHz and above), US is an established method for assessing benign and malignant skin lesions, locoregional staging, monitoring the therapeutic efficacy in various inflammatory skin conditions, and patient follow-up. One field, which may increasingly benefit from performant imaging techniques such as US is dermatologic surgery. Preoperative imaging of cutaneous tumors, inflammatory skin conditions (hidradenitis suppurativa, abscesses, etc.), or nail pathology provide dermatologic surgeons with relevant information for an optimal surgical planning, identifying potential complex aspects which might require interdisciplinary approaches, herein sparing unnecessary surgical interventions and increasing patients' compliance. In this review, we discuss the increasing significance of US in the field of dermatologic surgery, as well as the spectrum of cutaneous pathology where sonography can aid in the preoperative setting to provide a more precise, individualized surgical planning for better counseling to our patients and improved surgical results.


Assuntos
Hidradenite Supurativa , Neoplasias Cutâneas , Procedimentos Cirúrgicos Dermatológicos , Hidradenite Supurativa/patologia , Humanos , Pele/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/cirurgia , Ultrassonografia/métodos
19.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394023

RESUMO

Osteoporosis is a systemic metabolic skeletal disease characterized by low bone mass and strength associated with fragility fractures. Oxidative stress, which results from elevated intracellular reactive oxygen species (ROS) and arises in the aging organism, is considered one of the critical factors contributing to osteoporosis. Mitochondrial (mt)ROS, as the superoxide anion (O2-) generated during mitochondrial respiration, are eliminated in the young organism by antioxidant defense mechanisms, including superoxide dismutase 2 (SOD2), the expression and activity of which are decreased in aging mesenchymal progenitor cells, accompanied by increased mtROS production. Using a mouse model of osteoblast lineage cells with Sod2 deficiency, we observed significant bone loss in trabecular and cortical bones accompanied by decreased osteoblast activity, increased adipocyte accumulation in the bone marrow and augmented osteoclast activity, suggestive of altered mesenchymal progenitor cell differentiation and osteoclastogenesis. Furthermore, osteoblast senescence was increased. To date, there are only a few studies suggesting a causal association between mtROS and cellular senescence in tissue in vivo. Targeting SOD2 to improve redox homeostasis could represent a potential therapeutic strategy for maintaining bone health during aging.


Assuntos
Osteoblastos , Osteoporose , Superóxido Dismutase , Animais , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208960

RESUMO

Melanoma is the most dangerous skin malignancy due to its strong metastatic potential with high mortality. Activation of crucial signaling pathways enforcing melanoma progression depends on phosphorylation of distinct tyrosine kinases and oxidative stress. We here investigated the effect of a bis-coumarin derivative [3, 3'- ((3″, 5'-Dichlorophenyl) methylene) bis (4-hydroxy-2H-chromen-2-one)] [3, 3'- (3, 5-DCPBC)] on human melanoma cell survival, growth, proliferation, migration, intracellular redox state, and deciphered associated signaling pathways. This derivative is toxic for melanoma cells and non-toxic for melanocytes, their benign counterpart, and fibroblasts. 3, 3'- (3, 5-DCPBC) inhibits cell survival, migration, and proliferation of different metastatic and non-metastatic melanoma cell lines through profound suppression of the phosphorylation of Epidermal Growth Factor receptor (EGFR) and proto-oncogene cellular sarcoma (c-SRC) related downstream pathways. Thus, 3, 3'- (3, 5-DCPBC) endowed with the unique property to simultaneously suppress phosphorylation of multiple downstream kinases, such as EGFR/JAK/STAT and EGFR/SRC and their corresponding transcription factors.


Assuntos
Cumarínicos , Regulação para Baixo/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma , Proteínas de Neoplasias/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Cumarínicos/química , Cumarínicos/farmacologia , Receptores ErbB/biossíntese , Receptores ErbB/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Proteínas de Neoplasias/genética , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...